

When Randomized
Interventional Indirect
Effects Tell Stories About
Mediated Effects (and
When They Don't)

Caleb H. Miles Department of Biostatistics

"True" indirect effects

- Notation:
 - ► $A \in \{a', a\}$ exposure (suppose it's randomized)
 - ► Y outcome
 - ► *M* (possible) mediator
 - ightharpoonup Y(a), Y(m), M(a), etc. counterfactuals
- We would say there is an individual-level indirect effect for a given subject if their A affects their M, and the resulting change in M affects their Y.

"True" indirect effects

• Formally: for subject i,

$$M_i(a) \neq M_i(a')$$

 $Y_i(m) \neq Y_i(m')$ for $m = M_i(a)$ and $m' = M_i(a')$.

 If there is no individual-level indirect effect for anyone in the population, then any true indirect effect measure should be null.

The natural indirect effect

 The natural indirect effect (NIE) is the most popular causal definition of an indirect effect:

NIE =
$$E[Y\{a, M(a)\}] - E[Y\{a, M(a')\}]$$

- Compares counterfactual outcomes under the interventions:
 - ► Set A = a and M = M(a)
 - ► Set A = a and M = M(a')

The natural indirect effect

- Identification of the NIE relies on several assumptions about confounding.
- One is that there is no confounder of the effect of M on Y that's affected by A.

NIE identified

NIE not identified

Randomized interventional analog of the NIE

- To circumvent this controversial assumption, VanderWeele et al. (2014) proposed a randomized interventional analog of the NIE (NIE^R) (previously introduced by Didelez et al. (2006)), which allows for exposure-induced confounding.
- Instead of an intervention setting M=M(a'), they define a new random variable G(a'), with

$$G(a') \sim M(a')$$
, but $G(a') \perp \perp M(a')$.

The NIE^R is then defined to be

$$NIE^{R} = E[Y\{a, G(a)\}] - E[Y\{a, G(a')\}]$$

NIE^R lacks the property of a "true" indirect effect

Consider the counterfactual distribution:

$$L(a) = a\varepsilon_L + (1 - a)(1 - \varepsilon_L)$$

$$M(a, l) = (a + l + al)\varepsilon_M + (1 - a)(1 - l)(1 - \varepsilon_M)$$

$$Y(a, l, m) = (1 - a)lm + a(l + m - lm),$$

where $\varepsilon_L \sim \text{Bern}(\pi)$, $\varepsilon_M \sim \text{Bern}(\beta)$, and $\varepsilon_L \perp \!\!\! \perp \varepsilon_M$.

- When $\varepsilon_L=0$, M(a)=M(a'); when $\varepsilon_L=1$, Y(m)=Y(m'). Thus, there is no individual-level IE for anyone.
- Yet, NIE^R = $\pi\{2(1-2\beta)\pi + 2\beta 1\}$, which is not zero in general, nor is it bounded away from 1 or -1!

Recovering the "true" indirect effect property

- Maybe this example seems too contrived. Fair, but we need further assumptions to rule it out.
- Under any of the following
 - ightharpoonup A
 eq L, L
 eq M, or L
 eq Y
 - ► $L(a') \perp \!\!\! \perp \!\!\! \perp L(a)$ (Robins and Richardson, 2010)
 - ► No *L*-*M* interaction on *Y* on the additive scale (Tchetgen Tchetgen and VanderWeele, 2014),

then $NIE^R = NIE$, and NIE^R is a "true" indirect effect.

 However, under any of these, the NIE is also identified, so the NIE^R provides no advantage.

Joint stochastic intervention interpretation

- Despite lacking a true IE interpretation, the NIE^R still has a meaningful causal interpretation.
- It is the effect comparing two joint stochastic interventions:
 - ► Setting A = a and $M \sim f_{M(a)}(m) = f_{M|A}(m \mid A = a)$
 - ▶ Setting A = a and $M \sim f_{M(a')}(m) = f_{M|A}(m \mid A = a')$

Summary

- The NIE^R does not have a true IE interpretation without further assumptions.
- It does have a meaningful joint stochastic intervention interpretation.
- Perhaps there are other assumptions that yield a true IE interpretation while not identifying the NIE.

Bibliography I

Didelez, V., Dawid, A., and Geneletti, S. (2006). Direct and indirect effects of sequential treatments. In *23rd Annual Conference on Uncertainty in Artifical Intelligence*.

Robins, J. M. and Richardson, T. S. (2010). Alternative graphical causal models and the identification of direct effects. *Causality and Psychopathology: Finding the Determinants of Disorders and Their Cures*, pages 103–158.

Bibliography II

Tchetgen Tchetgen, E. J. and VanderWeele, T. J. (2014). On identification of natural direct effects when a confounder of the mediator is directly affected by exposure. *Epidemiology (Cambridge, Mass.)*, 25(2):282.

VanderWeele, T. J., Vansteelandt, S., and Robins, J. M. (2014). Effect decomposition in the presence of an exposure-induced mediator-outcome confounder. *Epidemiology (Cambridge, Mass.)*, 25(2):300.

Thank you!

Email: cm3825@cumc.columbia.edu

Twitter: CalebMiles16