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“True” indirect effects

¢ Notation:
> A e {da,a} —exposure (suppose it’s randomized)
» Y - outcome
» M — (possible) mediator
» Y(a), Y(m), M(a), etc. — counterfactuals
e We would say there is an individual-level indirect effect
for a given subject if their A affects their M, and the
resulting change in M affects their Y.
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“True” indirect effects

¢ Formally: for subject i,

M;(a) # M;i(a’)
Yi(m) # Y;(m') for m = M;(a) and m' = M;(a’).

¢ |f there is no individual-level indirect effect for anyone
in the population, then any true indirect effect measure
should be null.
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The natural indirect effect

¢ The natural indirect effect (NIE) is the most popular
causal definition of an indirect effect:

NIE = E[Y{a,M(a)}] — E[Y{a,M(a')}]

e Compares counterfactual outcomes under the
interventions:
> Set A =aand M = M(a)
> Set A=aand M = M(a’)
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The natural indirect effect

¢ |dentification of the NIE relies on several assumptions
about confounding.

¢ One is that there is no confounder of the effect of M on
Y that’s affected by A.

NIE identified NIE not identified
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Randomized interventional analog of the NIE

¢ To circumvent this controversial assumption,
VanderWeele et al. (2014) proposed a randomized
interventional analog of the NIE (NIEF) (previously
introduced by Didelez et al. (2006)), which allows for
exposure-induced confounding.

¢ Instead of an intervention setting M = M(a'), they
define a new random variable G(a'), with

G(a") ~ M(a"), but G(a') LLM(a").
The NIER is then defined to be
NIER = E[Y{a,G(a)}] — E[Y{a,G(d)}]
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NIER lacks the property of a “true” indirect effect
¢ Consider the counterfactual distribution:

L(&l) =ae; + (1 — El)(l — 8L)
M(a,l)=(a+1+alep+ (1 —a)(1—=D(1 —enm)
Y(a,l,m)=(1—a)lm+a(l+m—Im),

where ¢, ~ Bern(n), ey ~ Bern(3), and ¢ L &,.

e When ¢, =0, M(a) = M(a'); when ¢ =1, Y(m) = Y(m').
Thus, there is no individual-level IE for anyone.

e Yet, NIER = 7{2(1 — 23)x + 2 — 1}, which is not zero in
general, nor is it bounded away from 1 or -1!
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Recovering the “true” indirect effect property

¢ Maybe this example seems too contrived. Fair, but we
need further assumptions to rule it out.
¢ Under any of the following
» ALLLAMoOrLAY
» L(a’)1LL(a) (Robins and Richardson, 2010)
» No L—-M interaction on Y on the additive scale
(Tchetgen Tchetgen and VanderWeele, 2014),

then NIER = NIE, and NIER is a “true” indirect effect.

e However, under any of these, the NIE is also identified,
so the NIEF provides no advantage.
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Joint stochastic intervention interpretation

e Despite lacking a true IE interpretation, the NIER still
has a meaningful causal interpretation.
e |t is the effect comparing two joint stochastic
interventions:
> Setting A =aand M ~ fy,)(m) = fuja(m | A = a)
> Setting A =aand M ~ fy ) (m) = fyja(m | A =a’)
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Summary

e The NIEF does not have a true IE interpretation without
further assumptions.

¢ |t does have a meaningful joint stochastic intervention
interpretation.

e Perhaps there are other assumptions that yield a true
IE interpretation while not identifying the NIE.
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Thank you!

Email: cm3825@cumc.columbia.edu
Twitter: CalebMiles16
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